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Our contribution

Propose IFAN: an EBHD Framework for NLP Models

Users can observe explanations, edit the rationale, give feedback, efc.

Extend it with a Ul and a Management Systems
Monitor improvement, configure models and user access, efc.

Test IFAN on a Model Debiasing Task

We propose feedback rebalancing to contrast model forgetfulness.
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METHODOLOGY

The Final Prototype

@& IFAN
It's hate speech with a probability of 6.0

Unselectall [ = [ +
LI [Al-driven NLP systems are powerful [decision-makers) and are at the core of the current u

technological revolution in science, business, and even in most aspects of our private lives.

However, the machine learning models employed are opaque, which prevents their
deployment despite their high performance. This s particularly true for high-stake
applications, where disastrous consequences could originate if these systems do not operate
as desired. At the same time, while automated agents outperform humans in some specific

tasks, they still lack most of the generalization and reasoning capabilities that humans possess
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Tech Stack

Step 1: Select a dataset
to sample texts.

@) Step 5: Retrain the model on
provided feedback.

/IFAN Admin

I
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IFAN Backbone @ FastAp| (& @&

docker

Datasets

+ dataset_train: dataset
+ dataset_validation: dataset
+ meta_data: json

+ get_samples_from_dataset(): List

Models

+ model: AutoModel
+ pipeline: TextClassificationPipeline
+ adapters: List

+ predict(): List

+ missclasssified_samples(): List
+ explain(): List

+ run_evaluation(): List

Step 2: Select a
model to inspect.

3

Step 4: Provide the feedback
n the model's behaviour.

sevasaipt Bootstrap

Global Feedback

IFAN Ul

Local Feedback

You sample is toxic with prob. 99%

c*nt f*ggot n*gger wh*re f*cking

only a ret**d would think that safety strong beauty amazing

Step 3: Analyze model's
behavior with explanations.
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Interface
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https://www.youtube.com/watch?v=EzC6HI3JwaQ
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Backbone & APl

models ~
: /models/ GetAll Models Apl v 3‘
/models/meta_data Get Meta Data Of Model Apt v -‘
/models/meta_data Patch Meta Data Of Model Api 9 @
/models/missclassifed_samples Get Missclassied Samples A v a
/models/evaluation GetEvauaton Ap v i‘
/models/available_adapters GetAvslabie Adapters Api v a
i /uadels/trﬂinr_idaipiar Post Update Adapter Api v 37‘

/models/upload Upload v

datasets ~

IESIN /oatasets/ Geianpaasets A

m /datasets/meta_data GetMeta Data Of Dataset Api

m /datasets/samples GetSampies Api

m /datasets/samples_with_keyword GetSamples Keyword Api

S /oatasets/upload Upiced

prediction 2
m /prediction/ Get Predction Api

explanation ~
/explanation/local/ Post Local Explanaton Apl S “
/explanation/local/lime Post Local Lime Explanation Apl 78 ‘

/explanation/local/captum Post Local Captum Explanation Ap: v -‘
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User Roles & Feedback Mechanism
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Adapters are trained with batches of
human-highlighted sample segments.




RESULTS

Models love to Forget

Adapters learn very quickly from
feedback (especially on strong
signals).

Models tend to forget what they
know, with large drops in
performance.

Adding original samples to
feedback batches mitigates the
problem (Rebalancing).

Performance on Use Case

Model Pr Re F1 Pr;
BERT (baseline) 0.80 | 0.78 | 0.79 | 0.95
Most Confident Missclassified
BERT+Feedback (non-bal.) | 0.34 | 0.28 | 0.31 | 0.82
BERT+Feedback (bal.) 0.78 | 0.80 | 0.79 | 0.97
Least Confident Missclassified
BERT+Feedback (non-bal.) | 0.83 | 0.73 | 0.78 | 0.96
BERT+Feedback (bal.) 0.79 | 0.78 | 0.78 | 0.96




RESULTS

Effects of Rebalancin
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CONCLUSIONS

Limitations & Takeaways

e Editing explanations can carry human feedback which is beneficial for fixing NLP
models.

e As of now we support sentence-to-class and token-to-class tasks
(other tasks are work in progress)

e No clear optimal choices of hyperparameters for feedback
e Dealing with a large spectrum of models is hard, but is becoming easier.

e In most cases, your model won’t get much better in performance, but is more aligned
with humans where it received feedback.

e Rebalancing allows integrating feedback with minimal performance loss.
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It's hate speech with a probability of 6.00831%

Update explanations @ Unselect all
Al-driven NLP systems are powerful and are at the core of the current

technological revolution in science, business, and even in most aspects of our private lives.
However, the machine learning models employed are opaque, which prevents their
deployment despite their high performance. This is particularly true for high-stake
applications, where disastrous consequences could originate if these systems do not operate
as desired. At the same time, while automated agents outperform humans in some specific

tasks, they still lack most of the generalization and reasoning capabilities that humans possess.
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