Social Computing Group, Department of Informatics **Technical University of Munich**

"This Is a Suspicious Reaction!": Interpreting Logits Variations to Detect NLP Adversarial Attacks

Edoardo Mosca, Shreyash Agarwal, Javier Rando-Ramirez, Georg Groh

Motivation and Objectives Adversarial text attacks are a major challenge for the safe deployment of NLP systems in real-world processes. • Interpreting output logits has led to promising results in computer vision. We investigate how to **transfer this** methodology to NLP.

• We focus on **word-level attacks**, capable of preserving syntactical correctness.

World-level Differential Reaction (WDR)

Logits-based metric capturing words with a suspiciously high impact on the model's prediction

$$y^* = \arg\max_y p(y|x)$$

$$WDR(x_i, f) = f(x \setminus x_i)_{y^*} - \max_{y \neq y^*} f(x \setminus x_i)_y$$

Logit for class when Highest logit for all other classes when removing word

removing word

Original se	entence: N	eg. Review	w (Class 0)
This is abso	olutely the	worst trash	n I have ever
seen. It too	k 15 full m	inutes bef	ore I realized
that what I	was seeing	, was a sicl	k joke! []
Removed	Logit	Logit	WDR
Word x_i	Class 0	Class 1	$WDR(x_i, f)$

-3.46

-1.75

-3.42

-3.45

-3.47

6.89

3.43

6.76

6.86

6.89

3.44

1.68

3.34

3.40

3.41

Adversaria	al sentenc	e: Pos. Rev	view (Class 1)
This is abso	olutely the	e tough trash	n I have ever
seen. It too	k 15 full i	minutes befo	ore I realized
that what I	was seein	g was a silly	y joke! []
Removed	Logit	Logit	WDR

Removed Word x _i	Logit Class 0	Logit Class 1	$WDR WDR(x_i, f)$	
Ø	-1.85	2.17	4.02	
tough	2.14	-1.50	-3.64	
silly	1.38	-1.37	-2.75	
absolutely	-0.31	0.48	0.79	
realized	-1.07	1.36	2.43	

A negative WDR often points at a potential adversarial replacement!

worst

absolutely

realized

sick

Train the adversarial detector on the WDR (Balanced Dataset)

Qualitative Analysis

SHAP ANALYSIS

Only the largest WDR scores are very relevant for the detector. Negative values correlate with being adversarial.

DETECTOR TUNING

A higher decision threshold can further *improve adversarial* recall and eliminate false negatives.

Evaluation and Results				Takeaways		
Detec XG Boos delivered best performa (just sligh	ector ost as it d the ance phtly).	Our pipeline was (<i>DistilBERT, IMDI</i>) various unseen s	trained only of <i>PWWS</i>) and Settings with n	one configuration then tested on o retraining: Adv. Recall	Datasets IMDb RTMR Yelp Pol. AG News	 Text attacks are subtle, the model reaction is not! The WDR and logits-based metric are very effective detect attacks in NLP. Our pipeline is model-, #class and detector-agnostic. It is fundamental to study the transferability across datasets, target models, and attacks.
Tarç Mod	get dels	Train Test (avg.)	92.1 84.9	94.2 91.6	Text Attacks	
DistilB BERT CNN LSTM	BERT	On average, our F1 score is 8.96 pp. better than the state of the art FGWS [1] [1] Mozes et al.: <i>Frequency-Guided Word Substitutions for</i> <i>Detecting Textual Adversarial Examples</i> (EACL, 2021)			PWWS IGA BAE TextFooler	Check out our code !

sses-

