ПΠ

"That Is a Suspicious Reaction!": Interpreting Logits Variation to Detect NLP Adversarial Attacks

Uliventure der TVM

INTRODUCTION AND RELATED WORK

Adversarial Attacks in NLP

Original sentence

This is a **great** movie. Too bad it is not available on home video.

Word-level adversarial attack

This is a **expectant** movie. Too bad it is not available on home video.

Character-level adversarial attack

This is a **greatt** movie. Too bad it is not available on home video.

NEGATIVE

POSITIVE

→ NEGATIVE

INTRODUCTION AND RELATED WORK

Defense against Adversarial Attacks in NLP

Character-level attacks

Spell and syntax checkers

Word-level adversarial attacks

Robustness enhancement

Make the model inherently less likely to be fooled.

- Adversarial training
- Synonym Encoding Method

• ...

Adversarial detection

Build a post-hoc system to detect potential attacks and raise alerts.

- Discriminate Perturbation
- Frequency-Guided Word Substitution (<u>FGWS</u>)

Our contribution

Word-level Differential Reaction (WDR):

git-based metric to capture words with suspiciously high impact in predictions.

WDR scores are suitable to train an **adverarial detector**

Prove such detector to have full transferability

ross different datasets, attacks and target models (without retraining).

METHODOLOGY

Word-Level Differential Reaction (WDR)

Model prediction:
$$y^* = \arg \max_y p(y|x)$$

Effect of replacing a word x_i in sentence x:

$$WDR(x_i, f) = f(x \setminus x_i)_{y^*} - \max_{y \neq y^*} f(x \setminus x_i)_y$$

Logit for class y^* when
removing word x_i Highest logit for all other classes
when removing word x_i

WDR and adversarial attacks

Original sentence: Neg. Review (<i>Class 0</i>)
This is absolutely the worst trash I have ever
seen. It took 15 full minutes before I realized
that what I was seeing was a sick joke! []

Removed	Logit	Logit	WDR		
Word x_i	Class 0	Class 1	$WDR(x_i, f)$		
Ø	3.44	-3.46	6.89		
worst	1.68	-1.75	3.43		
sick	3.34	-3.42	6.76		
absolutely	3.40	-3.45	6.86		
realized	3.41	-3.47	6.89		

Adversarial sentence: Pos. Review (*Class 1*) This is absolutely the tough trash I have ever seen. It took 15 full minutes before I realized that what I was seeing was a silly joke! [...]

Removed	Logit	Logit	WDR		
Word x_i	Class 0	Class 1	$WDR(x_i, f)$		
Ø	-1.85	2.17	4.02		
tough	2.14	-1.50	-3.64		
silly	1.38	-1.37	-2.75		
absolutely	-0.31	0.48	0.79		
realized	-1.07	1.36	2.43		

$$WDR(tough, f) = -1.50 - 2.14$$
$$WDR(x_i, f) = f(x \setminus x_i)_{y^*} - \max_{y \neq y^*} f(x \setminus x_i)_y$$

METHODOLOGY

WDR and adversarial attacks

We expect predictions for adversarial samples to **strongly depend on adversarial replacements**. This is captured by WDR!

Original sentence	Neg. Re	eview (<i>Class 0</i>)	
--------------------------	---------	--------------------------	--

This is absolutely the worst trash I have ever seen. It took 15 full minutes before I realized that what I was seeing was a sick joke! [...]

Removed	Removed Logit		WDR		
Word x_i	Class 0	Class 1	$WDR(x_i, f)$		
Ø	3.44	-3.46	6.89		
worst	1.68	-1.75	3.43		
sick	3.34	-3.42	6.76		
absolutely	3.40	-3.45	6.86		
realized	3.41	-3.47	6.89		

Adversarial sentence: Pos. Review (*Class 1*) This is absolutely the tough trash I have ever seen. It took 15 full minutes before I realized that what I was seeing was a silly joke! [...]

Removed	Logit	Logit	WDR		
Word x_i	Class 0	Class 1	$WDR(x_i, f)$		
Ø	-1.85	2.17	4.02		
tough	2.14	-1.50	-3.64		
silly	1.38	-1.37	-2.75		
absolutely	-0.31	0.48	0.79		
realized	-1.07	1.36	2.43		

Table 1: $WDR(x_i, f)$ scores computed for an original sentence and its corresponding adversarial perturbation. Results show how when removing adversarial words such as *tough* or *silly*, the original class is recovered and the WDR becomes negative. \emptyset corresponds to the prediction without any replacements

Negative WDR \rightarrow change in prediction when removing a word

METHODOLOGY

Build an adversarial detector

EVALUATION

ТШ

Experimental setup

To evaluate our defense, we define a set of different datasets, target models and adversarial attacks.

Datasets

- IMDb
- Rotten tomatoes Movie Reviews
- Yelp Polarity
- AG News

Target models

- DistilBERT
- BERT
- CNN
- LSTM

Adv. attacks

- PWWS
- IGA
- BAE
- TextFooler

EVALUATION

Training a detector model

IMDb /

Training setup DistilBERT / PWWS

Model	F1-Score	Adv. Recall	
XGBoost	92.4	95.2	
AdaBoost	91.8	96.0	
LightGBM	92.0	93.7	
SVM	92.0	94.8	
Random For-	91.5	93.7	
est			
Perceptron	90.4	88.1	
NN			

Table 2: Performance comparison of different detector architectures on IMDb adversarial attacks generated with PWWS and targeting a DistilBERT transformer.

ТЛП

EVALUATION

Training a detector model

Training setup IMDb / DistilBERT / PWWS

Model	F1-Score	Adv. Recall	
XGBoost	92.4	95.2	
AdaBoost	91.8	96.0	
LightGBM	92.0	93.7	
SVM	92.0	94.8	
Random For-	91.5 93.7		
est			
Perceptron	90.4	88.1	
NN			

Table 2: Performance comparison of different detector architectures on IMDb adversarial attacks generated with PWWS and targeting a DistilBERT transformer.

Table 4: Performance comparison using different *Decision Thresholds* (DT) for our XGBoost classifier on the configuration (IMDb, DistilBERT, PWWS). The used default value is 0.5.

EVALUATION

Evaluating generalization

8	Configuration		WDR (Ours)		FGWS (Mozes et al., 2021)		
	Model	Dataset	Attack	F1-Score	Adv.	F1-Score	Adv.
Training					Recall		Recall
Config	DistilBERT	IMDb	PWWS	$\textbf{92.1} \pm \textbf{0.5}$	94.2 ± 1.1	89.5	82.7
ooning.	LSTM	IMDb	PWWS	$\textbf{84.1} \pm \textbf{3.4}$	86.8 ± 8.5	80.0	69.6
	CNN	IMDb	PWWS	84.3 ± 3.1	90.0 ± 6.2	86.3	79.6
2	BERT	IMDb	PWWS	$\textbf{92.4} \pm \textbf{0.7}$	92.5 ± 1.8	89.8	82.7
	DistilBERT	AG News	PWWS	$\textbf{93.1} \pm \textbf{0.6}$	96.1 ± 2.2	89.5	84.6
	DistilBERT	RTMR	PWWS	74.1 ± 3.1	85.1 ± 8.6	78.9	67.8
	DistilBERT	IMDb	TextFooler	$\textbf{94.2} \pm \textbf{0.8}$	97.3 ± 0.9	86.0	77.6
	DistilBERT	IMDb	IGA	$\textbf{88.5} \pm \textbf{0.9}$	95.5 ± 1.3	83.8	74.8
	DistilBERT	IMDb	BAE	$\textbf{88.0} \pm \textbf{0.9}$	96.3 ± 1.0	65.6	50.2
	DistilBERT	RTMR	IGA	$\textbf{70.4} \pm \textbf{5.5}$	90.2 ± 6.9	68.1	55.2
	DistilBERT	RTMR	BAE	$\textbf{68.5} \pm \textbf{4.3}$	82.2 ± 9.0	29.4	18.5
	DistilBERT	AG News	BAE	$\textbf{81.0} \pm \textbf{4.3}$	95.4 ± 3.8	55.8	44.0
	BERT	YELP	PWWS	89.4 ± 0.6	85.3 ± 1.7	91.2	85.6
	BERT	YELP	TextFooler	$\textbf{95.9} \pm \textbf{0.3}$	97.5 ± 0.6	90.5	84.2

(a) Performance results for detector trained on (DistilBERT, IMDb, PWWS).

8.89 pp. better on average !!

QUALITATIVE ANALYSIS

Understanding the adversarial detector

Figure 3: WDR scores with the highest impact (SHAP value) on the detector's prediction. Please recall that the WDR scores are sorted by magnitude. For instance, WDR 1 is the first and largest WDR score.

The first 3 WDR are the most relevant for the detector.

Being negative correlates with being adversarial.

Takeaways and Future Work

- WDR is extremely good for identifying adversarial examples
- Our pipeline is model-, #classes-, and detector-agnostic
- Out-of-the-box transferability works like a charm

- Expensive to compute (many forward passes needed)
- Would it work against character-level attacks?
- Is it resilient to adaptive attacks?

Thank you!!

Edoardo

Mosca

Shreyash Agarwal

Javier

Rando-Ramirez

Georg

Groh