Social Computing Group, Department of Informatics **Technical University of Munich**

Detecting Word-Level Adversarial Text Attacks via SHapley Additive exPlanations

Lukas Huber*, Marc Alexander Kühn*, Edoardo Mosca*, Georg Groh

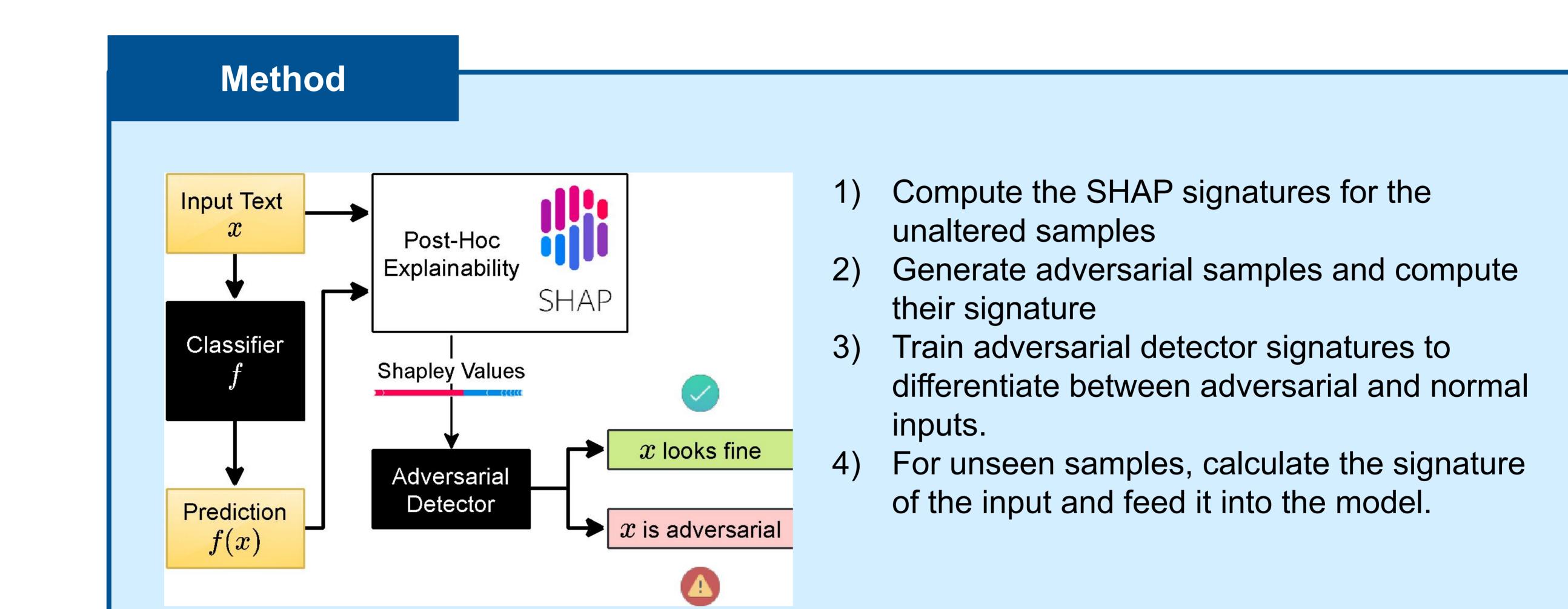
Motivation

- State-of-the-art machine learning models are prone to adversarial attacks: Maliciously crafted model inputs to fool the prediction
- Research in NLP still lacks techniques to make models resilient against those attacks
- We adapt a method from computer vision to detect word-level attacks leveraging SHAP

SHAP

- Based on the game-theoretical concept of Shapley values
- Allows to score the contribution of every word towards the overall prediction
- Adversarial attacks change characters/words to change the prediction. The modified tokens have large influence on the predicted class.
- The SHAP values for a whole sentence is called a

signature



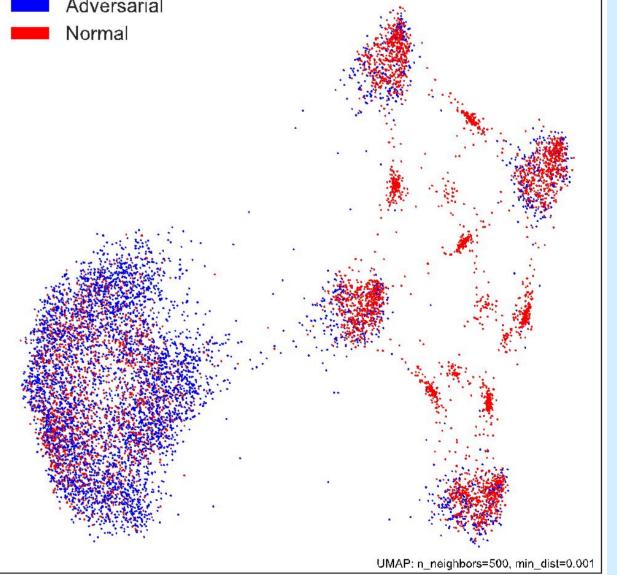
		Results							
	Method	AG_News	IMDb	SST-2	Yelp Polarity	Metric	Base-Model	IMDb (Test)	SST-2 (Test)
Our	Neural Network	0.90 / 0.90	0.96 / 0.96	0.75 / 0.75		F1 score / Accuracy	IMDb SST-2	-	0.56
	Random Forest	0.91 / 0.91	0.87 / 0.87	0.77 / 0.77		F1 score / Accuracy	Yelp Polarity	0.42 0.71	- 0.66
	SVM	0.90 / 0.90	0.90 / 0.90	0.74 / 0.74	0.89 / 0.89	F1 score / Accuracy			0.00
SotA Detector	FGWS [1]	-	0.77	0.63	-	F1 score			
Other Defenses	DNE [2]	0.91	0.82	-	-	Accuracy			
	SEM [3]	0.76	0.85	-	-	Accuracy			

Accuracy

We outperform the state-of-the-art detector and all other defenses

ASCC [4]

- Our detector is in some cases transferable to other datasets
- SHAP signatures of most adversarial samples collapse into a single cluster



Conclusion

Leveraging SHAP explanations for detecting adversarial examples works well for NLP

0.77

- Model explanations explicitly encode information to separate attacks from their conterpart
- Regarding transferability, our results are promising but not sufficient Future research should focus on performance evaluation against multiple types of attacks and models plus generalization across multiple datasets

* Authors with equal contribution.

[1] Maximilian Mozes, Pontus Stenetorp, Bennett Klein- berg, and Lewis Griffin. 2021. Frequency-guided word substitutions for detecting textual adversarial examples. In Proceedings of the 16th Conference of the European Chapter of the Association for Compu- tational Linguistics: Main Volume, pages 171–186, Online. Association for Computational Linguistics.

[2] Yi Zhou, Xiaoqing Zheng, Cho-Jui Hsieh, Kai-wei Chang, and Xuanjing Huang. 2020. Defense against adversarial attacks in nlp via dirichlet neighborhood ensemble. arXiv preprint arXiv:2006.11627.

[3] Xiaosen Wang, Hao Jin, and Kun He. 2019. Natural language adversarial attacks and defenses in word level. arXiv preprint arXiv:1909.06723.

[4] Xinshuai Dong, Anh Tuan Luu, Rongrong Ji, and Hong Liu. 2021. Towards robustness against natural lan- guage word substitutions. In 9th International Con- ference on Learning Representations (ICLR).